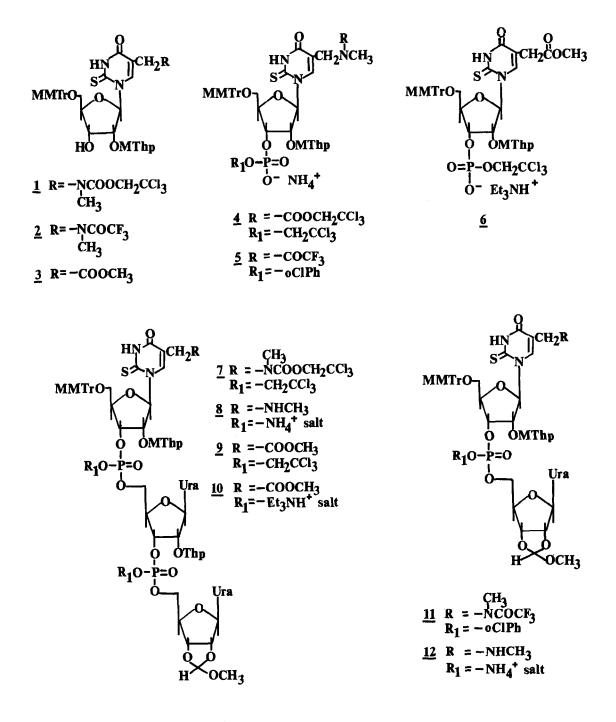
THE CHEMICAL SYNTHESIS OF ANTICODONS tRNA, Lys FROM E.COLI B AND tRNA, FROM RABBIT LIVER

A.Małkiewicz^x, E. Sochacka Institute of Organic Chemistry, Technical University 90-924 Łódź, Żwirki 36 , Poland

<u>Abstract</u>: The chemical synthesis of oligoribonucleotides mnm^5s^2UpUpU , mnm^5s^2UpU , mcm $5s^2UpUpU$ and mcm $5s^2UpU$ have been described.

The synthetic oligonucleotides with the sequences related to the anticodons may serve as tools for the biophysical investigations of the interaction of modified nucleosides with backbone¹ and multifarious biochemical study e.g. post-transcriptional modification of the wobble nucleoside in the " anticodon substituted " tRNAs².


In this communication we present the utility of previously reported³ derivatives of 5-methylaminomethyl-2-thiouridine(mnm⁵s²U)<u>1</u>, <u>2</u> and 5-carbomethoxymethyl-2-thiouridine(mcm⁵s²U)<u>3</u> in the synthesis of the title oligoribonucleotides by the triester approach⁴.

We have found³, that the exo-amino function of <u>1</u> and <u>2</u> can be deprotected under the conditions reported for the removal of 2,2,2-trichloroethyl^{5a} and o-chlorophenyl^{5b} groups from the phosphate residue of fully protected oligomers. Therefore, <u>4</u> and <u>5</u> have been used for the synthesis of anticodon tRNA, ^{Lys}.

To obtain oligonucleotides with mcm^5s^2U as component, neutral or slightly acidic conditions are preferable for the deblocking operation; <u>6</u> fulfils these requirements and was used for the synthesis of $tRNA_3^{Lys}$ from rabbit liver.

All phosphorylations and coupling reactions were achieved using an excess of 1-(mesitylenesulphonyl)-1H-1,2,4-triazole(MST)⁶ as the activating agent (three fold excess for phosphorylation; two fold excess for coupling reaction). Thus, <u>1</u>, <u>2</u>, and <u>3</u> were allowed to react with pyridinium 2,2,2-trichloroethyl phosphate or o-chlorophenyl phosphate(RT, 2 days) to give <u>4</u>,<u>5</u>, and <u>6</u> in high isolated yields⁷. To obtain protected trimers <u>7</u> and <u>9</u>, phosphates <u>4</u> and <u>6</u> (ammonium salt of <u>4</u> and triethylammonium salt of <u>6</u>) were coupled with 0.5 molar excess of 2'- 0-tetrahydropyranyluridylyl-(3'-5')-(2,2,2-trichloroethyl)-2', 3'-0-methoxymethylideneuridine⁸(RT, 4 days). The reaction mixtures were quenched with ice-water, crude products were extracted with chloro-

5391

- MMTr monomethoxytrityl MThp – methoxytetrahydropyranyl Thp – tetrahydropyranyl
- Ura uracil

form, finally separated and purified on short column⁹ to give analytically pure <u>7</u> and <u>9</u> as mixtures of diastereoisomers(<u>7</u>: yield 75%; $R_f 0.14^{10}$; ³¹P NMR¹¹ δ = -3.73, -3.83, -4.57, -4.83 ppm;<u>9</u>: yield 67%; $R_f 0.25^{10}$; ³¹P NMR¹¹ δ = -3.90, -3.98, -4.31, -4.49 ppm).

The <u>4</u> and <u>6</u> were condensed with 2',3'-O-methoxymethylideneuridine¹² following the presented procedure to give fully protected dimers mnm⁵s²UpU <u>13</u> and mcm⁵s²UpU <u>14</u> in 65-70% yield(<u>13</u>:R_f 0.21,0.17¹⁰;³¹P NMR¹¹ δ = -3.93,-4.23 ppm; <u>14</u>:R_f 0.27,0.25¹⁰; ³¹P NMR¹¹ δ = -3.60,-4.67 ppm).

The trimers 7,9 and dimers $\underline{13,14}$ were deprotected in the following order:(i) with Zn/acetylacetone in pyridine(RT,8h)^{5a} and partially deblocked oligomers were chromatographed on TLC preparative plates in isopropanol:conc.ammonia:wa-ter-7:1:2 for 7,13 and isopropanol:water-7:3 for 9,14;(ii) Acid labile groups were removed by treating partially deprotected oligomers with 0.01n HCI(RT,7h). Totally deprotected oligomers mnm⁵s²UpUU(<u>15</u>),mcm⁵s²UpUU(<u>16</u>), mnm⁵s²UpU(<u>17</u>), mcm⁵s²UpU(<u>18</u>),were purified on DEAE-32 column using TEAB buffer for a gradient elution(0.05-0.5M), next by paper chromatography(Whatman 3MM in n-propanol: ammonia:water-11:2:7 for <u>15,17</u> and isopropanol:water-7:3 for <u>16,18</u>)and lyophy-lised to give fluffy solids.Spectral data are showed in the Table I.

	Yield %	R _f /TLC/	³¹ 2 NMR ^C	EVd	A ₂₈₀ /A ₂₆₀ /pH/
<u>15</u>	42	0.42 ^a	-1.01; -1.27	0.47	0.78/2/ 0.67/12/
<u>16</u>	51	0.53 ^b	-0.4 + +1.20	0.70	0.75/2/ 0.68/12/
<u>17</u>	45	0.57 ^a	-1.01	0,18	1.00/2/ 0.78/12/
<u>18</u>	48	0.62 ^b	-0.41	0.45	0.92/2/ 0.70/12/

Tε	ıb	le	I

Merck cellulose 60 F₂₅₄ plates were used for TLC in systems: a/ n-propancl: ammonia:water-11:2:7; b/ isopropanol:water-7:3

c/ in water; H_3PO_4 as external standard

d/ electrophoretical mobility reffered to 3'Up in phosphate buffer (pH 7.5)

Deprotection of oligomers with Zn/acetylacetone system lead to products slightly contaminated with metal, which can falsify chemical and biochemical activity test¹³. To overcome this disadvantage compound 5 has been tested as component for the oligonucleotide synthesis. Thus, 5 was condensed with 2',3'-O-methoxymethylideneuridine under the previously described conditions to give <u>11</u> in 68% yield($R_f 0.18$, 0.22^{10} ; ³¹P NMR¹¹ δ = -8.06, -8.37 ppm). Simultaneous deprotection of amine and phosphate functions was achieved with

0.1n NaOH in dioxane:water-4:1 according to Reese procedure^{5b}. Removal of acid labile groups with 0.01n HCI(RT,7h) and purification according to the discussed previously procedure gave dimer <u>13</u> in the yield comparable with that, obtained by the former way. Homogeneity of all synthesized oligonucleotides was confirmed by spectral data,3V, chromatography / Table I / as well as by complete digestion with T₂ nuclease.

Using conventional Nirenberg-Leder filter $assay^{14}$ it has been found that 70S ribosomes from E. coli are more active in the binding tRNA^{Phe} in the presence of <u>15,16</u>, than programmed by $(Up)_3 U^{15}$.

Acknowledgment

This work was supported by the Polish Academy of Sciences , project MR 1.8.7.5.

References and footnotes

- 1.Hillen W., Egert E., Lindner H.J., Gassen H.G., <u>FEBS Lett.</u>, <u>94</u>, 361,(1978) Yokoyama S., Yamaizumi Z., Nishimura S., Miyazawa T., <u>Nucleic Acids Res</u>., 6. 2611 (1979)
- 6, 2611 (1979)
 2. Bruce A.G., Uhlenbeck O.C., Biochemistry, <u>21</u>,855 (1982); Fournier M., Haumont E., de Henau S., Gangloff J., Grosjean H., <u>Nucleic Acids Res.</u>, <u>11</u>,707(1983)
- 3. Małkiewicz A., Sochacka E., Manuscript submitted to this Journal.
- 4. For the oligonucleotides synthesis see a/ Reese C.B. <u>Tetrahedron, 34</u>, 3143(1978); b/ Ohtsuka E., Ikehara M., Soll D., <u>Nucleic Acids Res.</u>, 10, 6553(1982)
- 5. a/ Adamiak R.W., Biała E., Grześkowiak K., Kierzek R., Kraszewski A., Markiewicz W.T., Stawiński J., Wiewiórowski M., <u>Nucleic Acids Res.,4</u>, 2321 (1977); b/ van Boom J.H., Burgers P.M.J., Owen G.R., Reese C.B., Saffhill R., <u>Chem. Comm.</u>, <u>1971</u>, 869.
- 6. Katagiri N., Itakura K., Narang S.A., <u>J.Am.Chem.Soc</u>.,<u>97</u>,7332 (1975)
- 7. Derivatives of mnm⁵s²U and mcm⁵s²U protected with t-butyldimethylsilyl group at 2'-hydroxyl function and stronger coupling agents are under investigation.
- 2'-O-Tetrahydropiranyluridylyl- (3'-5')- (2,2,2-trichloroethyl) -2',3'-O--methoxymethylideneuridine was prepared essentially according to procedure reported by Werstiuk E.S., Neilson T., <u>Can.J.Chem.</u>, <u>54</u>,2689(1976)
- 9. For short column chromatography Merck Kieselgel H and gradient methanol in chloroform (0-10%) have been used.
- 10.TLC chromatography was performed on Merck silica gel 60 HF₂₅₄ plates in chloroform:methanol-95:5.
- 11.³¹ P NMR spectra were performed in CHCl₃ as solvent and H_2PO_4 as reference
- 12.Griffin B.E., Jarman M., Reese C.B., Sulston J.E., <u>Tetrahedron</u>, <u>23</u>, 2301 (1967)
- 13.Wolter A., Koster H., <u>Tetrahedron Lett.</u>, <u>24</u>,873 (1983); anthranilic acid could be expected more valuable coreagent for the deblocking with Zn oligomers <u>7</u>,9,13,14.
- 14.Nirenberg M., Leder P., <u>Science</u>, <u>145</u>,1399(1964)
- 15.Gassen H.G., Małkiewicz A., unpublished results.

(Received in UK 19 August 1983)

5394